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1 Free Modules

1.1 Free modules over rings

Let R be a commutative ring.

Definition 1.1. An R-module M is free on a subset X if for any R-module N and map
f : X → N , there exists a unique R-module homomorphism φf : M → N such that
φf |X = f .

Example 1.1. If X is a set, we can construct the free module on X: FX =
⊕

x∈X R · x.

We can think of this as a functor F from Set to R-mod. With this viewpoint, if
f : X → Y , then F (f) : FX → FY is given by F (f)(

∑n
i=1 aixi) =

∑n
i=1 aif(xi). So for

F : Set→ R-mod,
HomSet(X,N) ∼= HomR-mod(FX , N),

where this isomorphism is natural. That is, F is left-adjoint to the forgetful functor from
R-mod to Set.

Lemma 1.1. An R-module M is free on X if and only if

1. X generates M as an R-module (i.e. for all m ∈ M , there exist x1, . . . , xn ∈ X and
a1, . . . , an ∈ R such that m =

∑
aixi)

2. X is R-linearly independent (i.e. if
∑n

i=1 aixi = 0 with s1, . . . , xn ∈ X distinct, then
ai = 0 for all i).

Proof. If M is free on X¡ then there exists a unique isomorphism from M to FX , induced
by the identity on X. FX satisfies these two properties, so M does.

If M satisfies the two properties, then there exists a unique φ : FX → M sending
x 7→ X (since X ⊆ M). Property 1 implies that φ is surjective, and property 2 implies
that φ is injective.
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1.2 Bases and vector spaces

Definition 1.2. If X generates the R-module M and is linearly independent, we call it a
basis of the M .

Theorem 1.1. Every vector space V over a field has a basis. In fact, every linearly
independent set in V is contained in a basis, and every spanning set contains a basis.

Proof. We will prove the first statement; the other two statements follow by a similar
argument. Let V be an F -vector space, where F is a field. Conide the set S of subsets X
of V that are F -linearly independent. (S,⊆) is a partially ordered set (poset). If C is a
chain,

⋃
X∈C X is linearly independent, so it is an upper bound on C. By Zorn’s lemma,

S has a maximal element B. Let W = span(B). If v ∈ V \W , then B ∪ {v} is linearly
independent, contradicting the maximality of B. Then V = W , so B is a basis.

Example 1.2. The field condition is very important; here are counterexamples for general
rings. Let R = Z and M = Z. Then 2 ∈ Z, but 2 is not contained in a basis of Z. The set
{2, 3} spans Z, but does not contain a basis.

Proposition 1.1. Let V be an F -vector space with a basis of n elements. Let Y ⊆W .

1. If Y spans V , then |Y | ≥ n.

2. If Y is linearly independent, then |Y | ≤ n.

3. If |Y | = n, then Y is linearly independent iff Y spans V .

Remark 1.1. The first two properties hold for free modules with a basis of n elements as
well, but the 2nd property becomes harder to prove. For the third property, in the general
case, we just have that if Y spans and |Y | = n, then Y is linearly independent.

Corollary 1.1. If ϕ : V → W is an F -linear transformation of finite-dimensional vector
spaces over F , then dimF (V ) = dimF (ker(ϕ)) + dimF (im(ϕ)). In particular, if dimV =
dimW , then ϕ is injective iff ϕ is surjective iff ϕ is an isomorphism.

1.3 Cardinality of bases

Theorem 1.2. If X and Y are sets and FX
∼= FY , then X and Y have the same cardinality.

Proof. Suppose |Y | ≥ |X| and first suppose that X is infinite. It suffices to show FX

has no basis of cardinality > |X|. Suppose B ⊆ FX is a basis of FX . Every x ∈ X
is a finite linear combination of some elements in B; let Bx be the set of these. Then
|
∐

x∈X Bx| ≥ |
⋃

x∈X B| and it generates FX , so we can get the upper bound on cardinality
|B| ≤ |Z×X| = |X|. Therefore, FX has no basis of cardinality > |X|.
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If Y is finite, let m be a maximal ideal of R. Then F = R/m is a field, and

FX/mFX
∼=

(⊕
x∈X

R

)
/m

(⊕
x∈X

R

)
∼=
⊕
x∈X

F.

The same is try for FY . The isomorphism FX
∼= FY induces the isomorphism of F -vector

spaces FX/mFX
∼= FY /mFY , which then have bases of cardinality |X| and |Y |. Y is finite,

so X is finite and has cardinality |X| = |Y |.
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